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Abstract

We construct stable bundle extensions on elliptically fibered Calabi–Yau threefolds. We show that these bundles can solve the
topological anomaly constraint in heterotic string theory without the need for invoking background five-branes.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the present paper we consider the class of elliptically fibered Calabi–Yau threefolds π : X → B with a section
σ and construct stable vector bundles V of vanishing first Chern class using the method of bundle extensions. For a
choice of data the bundles satisfy

c2(T X) = c2(V )

and so qualify as physical gauge bundles for heterotic string theory compactification.
In contrast, the widely used spectral cover construction [1–3] gives stable vector bundles on elliptic fibrations.

These bundles solve the generalized anomaly constraint c2(T X) − c2(V ) = [W ] with [W ] an effective curve class
(cf. below, Section 7). This mismatch causes two problems in physical model building: firstly, for [W ] 6= 0 it prevents
the model from being interpreted as a nonlinear sigma model; secondly, for [W ] 6= 0, and even for [W ] = 0 while
V 6= T X , it leads to singular three-forms in the heterotic anomaly equation. As a consequence, it is more difficult
to solve the anomaly equation because a nontrivial string theory H -field has to be taken into account. A detailed
discussion of these issues is given in the physical companion paper [4].

The paper is organized as follows. In Section 2, a general outline of the construction method is given and the
necessary steps for proving the stability of a given non-split extension are described. We consider extensions of
Wq ⊗OX (pD) by Up ⊗OX (−q D) where Up and Wq are given stable vector bundles of vanishing first Chern class.
D is a divisor in X , chosen such that the resulting vector bundle has a trivial determinant. The main result of this
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section is Lemma 2.3, which gives a sufficient condition for the bundle not to be destabilized by certain subsheaves.
In Section 3, we restrict to extensions V of OX (nD) by π∗E ⊗OX (−D) where E is a given stable vector bundle on
the base of the Calabi–Yau threefold. The main result of this section is Lemma 3.1; it provides conditions for choosing
such an extension V non-split. In Section 4, we prove the stability of a pull-back bundle π∗E , assuming that the base
of the Calabi–Yau space is given by the Enriques surface (Lemma 4.1). We then prove that V is stable in a specific
region of the Kähler cone (Proposition 4.2). In Section 5, we generalize the results of the previous section to elliptic
Calabi–Yau threefolds with ample K −1

B . In Section 6, we consider extensions of stable spectral cover bundles Vn and
prove the stability for extensions of OX (nπ∗α) by Vn ⊗ OX (−π∗α) where α ∈ H2(B, Z). In Section 7, we give
explicit solutions to the topological anomaly constraint imposed by heterotic string theory.

Throughout the paper we use the notation ci = ci (B).

2. Method of construction

Let π : X → B be an elliptically fibered Calabi–Yau threefold with a section σ . Except in Section 6, we will
consider B to be either an Enriques surface or a surface with ample K −1

B such as the Hirzebruch surface Fr with
r = 0, 1 or the del Pezzo surface d Pk with k = 0, . . . , 8.

We consider vector bundles V of rank p + q on X defined as nontrivial extensions of bundles Up and Wq .

Assumption 2.1. We assume that Up and Wq are stable vector bundles both of vanishing first Chern class.

Furthermore, Up and Wq should be suitably twisted by line bundles such that V has vanishing first Chern class

0 → Up ⊗OX (−q D) → V → Wq ⊗OX (pD) → 0

where D = xσ + π∗α. To discuss stability we will choose as polarization J = zσ + π∗ H where H (chosen in the
integral cohomology) is in the Kähler cone CB of the base B and z ∈ R>0. For an elliptically fibered Calabi–Yau space
X one finds, via the Nakai-Moishezon criterion, that J in the Kähler cone CX of X under the following conditions [5]

J ∈ CX ⇐⇒ z > 0, H − zc1 ∈ CB .

The following lemma is obvious.

Lemma 2.2. Two necessary conditions for V to be stable are

(i) D J 2 > 0 or equivalently µ(Up ⊗OX (−q D)) < 0
(ii) Wq ⊗OX (pD) is not a subbundle of V , i.e. the exact sequence defining V can be chosen non-split.

For the rest of this section let us assume that the non-split condition can be satisfied.
To discuss the required steps for proving the stability of V consider the following diagram of exact sequences

0 0 0
↑ ↑ ↑

0 → P = P̄ ⊗OX (−q D) → V/V ′
r+s → T = T̄ ⊗OX (pD) → 0

↑ ↑ ↑

0 → Up ⊗OX (−q D)
i

→ V
j

→ Wq ⊗OX (pD) → 0
↑ ↑ ↑

0 → Fr ⊗OX (−q D) → V ′
r+s → Gs ⊗OX (pD) → 0

↑ ↑ ↑

0 0 0

with Fr ⊗ OX (−q D) = i−1V ′
r+s and Gs ⊗ OX (pD) = j (V ′

r+s) of ranks 0 ≤ r ≤ p and 0 ≤ s ≤ q for a subsheaf
V ′

r+s of V .
In the following we will discuss the required steps for proving stability of V . In total we have to consider all

subsheaves V ′
r+s of V with 0 ≤ r ≤ p and 0 ≤ s ≤ q . However, we can exclude certain cases.

Step 1: We first note that the cases (0, 0), (p, 0) and (p, q) do not occur as destabilizing subsheaves. The cases
(0, 0) and (p, q) are ruled out as we only have to consider subsheaves V ′

r+s of rank r +s with 0 < r +s < p+q. Note
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that r = 0 implies Fr = 0 as Up does not have a non-zero subsheaf of vanishing rank (the same holds correspondingly
for s = 0). Moreover, we can assume [10, Lemma 4.5] that the quotient V/V ′

r+s is torsion free and so cases with r = p
need not be considered since (Up ⊗OX (−q D))/(Fp ⊗OX (−q D)) is a torsion sheaf.

Step 2: To prove the stability of V we need to show that µ(V ′
r+s) < 0 for all 0 < r + s < p +q with 0 ≤ r ≤ p −1

and 0 ≤ s ≤ q . We first note that

(r + s)µ(V ′
r+s) = (ps − qr)D J 2

+ rµ(Fr ) + sµ(Gs)

and the discussion depends on the sign of (ps − qr).
(ps − qr) < 0: As D J 2 > 0 by assumption and µ(Fr ) < 0, respectively, µ(Gs) < 0 we get in this case

µ(V ′
r+s) < 0.

(ps − qr) > 0: We have µ(Fr ) < 0 and µ(Gs) < 0 for 0 < r < p and 0 < s < q. Further if s = q then
µ(Gq) ≤ 0 according to [10, Lemma 4.3] So we get the following subcases:

(i) µ(Fr ) < 0, µ(Gs) < 0
(ii) µ(Fr ) < 0, µ(Gq) < 0

(iii) µ(Fr ) < 0, µ(Gq) = 0
(iv) r = 0, µ(Gq) < 0
(v) r = 0, µ(Gq) = 0.

(i)–(iv): We have to solve µ(V ′
r+s) < 0 for z, together with D J 2 > 0 for all subsheaves V ′

r+s for 0 < r +s < p+q
(cf. Propositions 4.2, 5.2 and 6.1).

(v): This case has to be excluded as µ(V ′

0+q) = (p)D J 2 > 0.
The following result gives a condition when subsheaves V ′

0+q
∼= Gq ⊗OX (pD) do not destabilize V because they

do not exist. So the cases (iv) and (v) would then be excluded if one could show the corresponding assertion about the
f -map, however, following this line of argumentation we will actually exclude case (v) below (cf. Lemma 4.4).

Lemma 2.3. Let U := Up ⊗OX (−q D), W := Wq ⊗OX (pD) and G := Gq ⊗OX (pD). A sufficient condition for
V not to be destabilized by a subsheaf G of W is given by the injectivity of the map

Ext1(W, U )
f

→ Ext1(G, U ).

Proof. For the convenience of the reader we provide a proof of this standard fact from homological algebra. We first
ask when is it possible that a map G → W lifts to a map G → V . To see this consider

→ Hom(G, V ) → Hom(G, W ) → Ext1(G, U )

showing that the obstruction to lifting an element of Hom(G, W ) to an element of Hom(G, V ) lies in Ext1(G, U ). We
have a commutative diagram

Hom(W, W )
∂

→ Ext1(W, U )

↓ ↓

Hom(G, W ) → Ext1(G, U )

with ∂(1) = ξ the extensions class. So we conclude that a non-zero element of Hom(G, W ) can be lifted to an element
of Hom(G, V ) exactly when the extension class ξ is in the kernel of

f : Ext1(W, U ) → Ext1(G, U )

thus if f is injective f (ξ) 6= 0 and such a lifting does not exist. �

(ps − qr) = 0: This case in principle has to be treated separately in a manner similar to the case ps − qr > 0.
Below (Sections 4–6) we will show for extensions of the type (p, q) = (n, 1) the following: the case ps − qr = 0

does not occur, the f -map arguments for the case (0, q) can be carried through and the non-split condition can be
fulfilled.
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Finally, a direct computation gives the Chern classes of V

c1(V ) = 0

c2(V ) = −
1
2

pq(p + q)D2
+ c2(Up) + c2(Wq)

c3(V ) =
1
3

pq(p2
− q2)D3

+ 2
(
qc2(Up) − pc2(Wq)

)
D + c3(Up) + c3(Wq).

3. Non-split conditions

We will now restrict the general set-up of Section 2 to extensions with Up given by stable pull-back bundles π∗E
(with E a rank n vector bundle on B, stable with respect to an ample class H in B and c1(E) = 0) and Wq = OX
such that the resulting vector bundle V has rank m = n + 1. To prove the stability of π∗E and V will then be our
main focus in the subsequent two sections.

The following result provides sufficient conditions for choosing non-split extensions if Up is given by π∗E .
Let y := mx and E1 := R1π∗OX (−yσ) ⊗ E ⊗ OB(−mα) and E2 := π∗OX (−yσ) ⊗ OB(−mα) ⊗ E (the

expressions E1 and E2 occur below in the Leray spectral sequence).

Lemma 3.1. Let E be a H-stable rank n vector bundle on a rational surface B with c1(E) = 0, and let D = xσ+π∗α

then an extension of OX (nD) by π∗E ⊗OX (−D) can be chosen non-split for

(i) x > 0: if (2H − zc1)α ≤ 0 and χ(B, E1) > 0.
(ii) x < 0: if χ(B, E2) < 0.

(iii) x = 0: if χ(B, E ⊗OB(−mα)) < 0.

Proof. We apply the Leray spectral sequence to π : X → B and use the projection formula giving

0 → H1(B, E2) → H1(X, π∗E ⊗OX (−m D)) → H0(B, E1) → H2(B, E2).

If x > 0 then π∗OX (−yσ) = 0 thus

H1(X, π∗E ⊗OX (−m D)) ∼= H0(B, E1)

now Serre duality on B and [R1π∗OX (−yσ)]∗ = π∗OX (yσ) ⊗ K −1
B give

H2(B, E1)
∗

= H0(B, π∗OX (yσ) ⊗OB (mα) ⊗ E∗)

where π∗OX (yσ) = OB ⊕ K 2
B ⊕ · · · ⊕ K y

B for y > 1 [2, Lemma 4.1] thus

H2(B, E1)
∗

= H0(B,OB (mα) ⊗ E∗) ⊕ H0

(
B,

y⊕
i=2

K i
B ⊗OB (mα) ⊗ E∗

)
.

Now the first term vanishes if

nµ(OB(mα) ⊗ E∗) = (2H − zc1)α ≤ 0

all other terms vanish if

nµ(K i
B ⊗OB(mα) ⊗ E∗) = −i(2H − zc1)c1 + m(2H − zc1)α ≤ 0

as 2H − zc1 ∈ CB it follows (2H − zc1)c1 ≥ 0 and so we only have to impose (2H − zc1)α ≤ 0. Note that for B,
the Enriques surface, this condition becomes αH ≤ 0. For a surface with K −1

B ample and H = hc1, cf. below, the
condition becomes (2h − z)αc1 ≤ 0; as 2h − z > 0 this is equivalent to αc1 ≤ 0, i.e., again αH ≤ 0.

Having H2(B, E1)
∗

= 0, we can now apply the Hirzebruch–Riemann–Roch formula and conclude that if
χ(B, E1) > 0 then H1(X, π∗E ⊗OX (−m D)) is non-zero completing the proof of (i).

(ii) and (iii): If x < 0 then R1π∗OX (−yσ) = 0 and the Leray spectral sequence gives

H1(X, π∗E ⊗OX (−m D)) ∼= H1(B, E2)

thus if χ(B, E2) < 0 we have H1(B, E2) 6= 0.



B. Andreas, G. Curio / Journal of Geometry and Physics 57 (2007) 2249–2262 2253

If x = 0 then the Leray spectral sequence simplifies (with π∗OX = OB)

0 → H1(B, E ⊗OB(−mα)) → H1(X, π∗E ⊗OX (−m D)) →

and a sufficient condition for the first space to be non-zero is χ(B, E ⊗OB(−mα)) < 0. �

Let us state the explicit expressions for χ(B, E1), χ(B, E2) and χ(B, E ⊗OB(−mα)). For y = mx > 0 we note
that R1π∗OX (−yσ) = K 1

B ⊕ K −1
B ⊕ · · · ⊕ K 1−y

B for y > 1 [2, Lemma 5.16] and

ch(R1π∗OX (−yσ)) = y + A1c1 + A2
c2

1
2

where we have set A1 = −1 +
y(y−1)

2 and A2 = 1 +
y(y−1)(2y−1)

6 . The Hirzebruch–Riemann–Roch formula gives

χ(B, E1) = y
(

n − c2(E) +
nm2

2
α2
)

+ A3
n
2

c2
1 − A4nmαc1

where A3 =
y(y2

−1)
3 and A4 = −1 +

y2

2 . For y = mx < 0 we obtain

ch(π∗OX (−yσ)) = −y − A1c1 − A2
c2

1
2

and the Hirzebuch–Riemann–Roch formula yields

χ(B, E2) = −y
(

n − c2(E) +
nm2

2
α2
)

− A3
n
2

c2
1 + A4nmαc1.

If x = 0 we find

χ(B, E ⊗OB(−mα)) = n − c2(E) +
nm
2

α (mα − c1) .

Remark 3.2. Note that for x > 0 the case α = c1 does not lead to H1(X, π∗E ⊗OX (−m D)) 6= 0. E being supposed
to be stable, one has H0(B, E) = 0; the same holds for the slope-zero stable bundle K B ⊗ E . However, if E is a
H -semistable vector bundle of zero slope on the Enriques surface and H0(B, E) 6= 0 then for x > 0 and α = c1 one
can choose an extension of OX (nD) by π∗E ⊗OX (−D) to be non-split.

Lemma 3.3. For x > 0, the condition µ(K 1−y
B ⊗ OB(−mα) ⊗ E) > 0 is necessary for the existence of a non-split

extension of OX (nD) by π∗E ⊗OX (−D).

Proof. From Lemma 3.1 we have for x > 0 that

H1(X, π∗E ⊗OX (−m D)) ∼= H0(B, R1π∗OX (−yσ) ⊗ E ⊗OB(−mα)).

If µ(K 1−y
B ⊗OB(−mα) ⊗ E) ≤ 0 then we have H0(B, E1) = 0 and so the extension splits. �

Corollary 3.4. For x 6= 0 and B the Enriques surface the following relation necessarily holds when V is stable

x · (αH) < 0.

Proof. We apply Lemma 2.2. For x < 0 from the condition

D J 2
= xσ(H − zc1)

2
+ z(2H − zc1)ασ > 0

it follows that Hα > 0 (for the cases with K −1
B ample and H = hc1 we get αc1 > 0). For x > 0 the non-split

condition gives

nµ(K 1−y
B ⊗OB(−mα) ⊗ E) = (y − 1)(2H − zc1)c1 − m(2H − zc1)α > 0

becoming −2mαH > 0 for the Enriques surface. �
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4. Stable extensions on the Enriques CY space

In this section we consider a Calabi–Yau space X , elliptically fibered over an Enriques surface B, cf. Appendix.
Given a stable vector bundle E of rank n ≥ 2 with c1(E) = 0 on B, we will construct rank n + 1 vector bundles of
trivial determinant on X as non-split extensions of OX (nD) by π∗En ⊗ OX (−D) with D = xσ + π∗α and prove
that V is stable in a region of the Kähler cone of X . For this we show first that π∗E is stable on X provided that E is
stable on the Enriques surface. For the existence of stable vector bundles on Enriques surfaces see [8,9]. The fact that
π∗E is stable on Calabi–Yau threefolds elliptically fibered over the Enriques surface has been used previously in [6].

Lemma 4.1. π∗E is (semi)stable with respect to J = zσ + π∗ H on X if E is (semi)stable on B with respect to H
and with c1(E) = 0.

Proof. Let F be a subsheaf of π∗E where we can assume that π∗E/F is torsion free [10, Lemma 4.5]; so we have
0 → F |σ → E and c1(F |σ )H < 0 (for semistability ≤ 0). Similarly we get 0 → F |F → Or

F thus deg(F |F ) ≤ 0
as Or

F is semistable (where r := rk E). We conclude that c1(F) =: −Aσ + π∗λ has A ≥ 0 and λH < 0 and
c1(F)J 2

= −AH2σ + 2zλHσ < 0 (with < replaced by ≤ for semistability). �

In the following proposition we construct stable bundles V of vanishing first Chern class (recall that xa < 0 for
x 6= 0 by Corollary 3.4, where a = αH ).

Proposition 4.2. Let V be a rank n + 1 vector bundle on π : X → B defined by a non-split extension

0 → π∗E ⊗OX (−D) → V → OX (nD) → 0

with E a rank n, H-stable bundle with c1(E) = 0 on an Enriques surface B and D = xσ + π∗α and a := αH. Then
V is stable with respect to J = zσ + π∗ H for |x | < |a| and

(i) x > 0 and nx
1−na

H2

2 < z < nx
−na

H2

2

(ii) x < 0 and −nx
na

H2

2 < z < −nx
na−1

H2

2 .

Proof. We have to consider now the following diagram of exact sequences

0 0 0
↑ ↑ ↑

0 → P = P̄ ⊗OX (−D) → V/V ′

r+1 → T = T̄ ⊗OX (nD) → 0
↑ ↑ ↑

0 → π∗E ⊗OX (−D)
i

→ V
j

→ OX ⊗OX (nD) → 0
↑ ↑ ↑

0 → Fr ⊗OX (−D) → V ′

r+1 → G1 ⊗OX (nD) → 0
↑ ↑ ↑

0 0 0

In view of the discussion in Section 2 we have to prove the stability of V for 0 < r + 1 < n + 1 with 0 ≤ r ≤ n − 1
and show µ(V ′

r+1) < 0. We have

(r + 1)µ(V ′

r+1) = (n − r)D J 2
+ rµ(Fr ) + µ(G1)

with µ(Fr ) < 0 by stability of π∗E and µ(G1) ≤ 0 by [10, Lemma 4.3]. We first note that cases with (n − r) = 0 do
not occur as r 6= n. We are left with discussing the cases (n − r) > 0 leading to the following subcases:

(i) µ(Fr ) < 0, µ(G1) < 0
(ii) µ(Fr ) < 0, µ(G1) = 0

(iii) r = 0, µ(G1) < 0
(iv) r = 0, µ(G1) = 0.

(ii) and (iii): We must solve the following inequalities for z simultaneously (thereby solving (i))
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(n − r)D J 2
+ rµ(Fr ) < 0, (n − r)D J 2

+ µ(G1) < 0, D J 2 > 0

where the last inequality assures that µ(π∗E ⊗OX (−D)) < 0.
By the stability of π∗E we have c1(Fr ) = −Aσ + π∗λ with −A ≤ 0 and λH < 0 and c1(G1) = −D2 with

D2 = B ′σ + π∗β̄ an effective divisor. We set −β̄ = β such that c1(G1) = −B ′σ + π∗β. The slopes of Fr and G1
are given by

rµ(Fr ) = −AH2σ + 2zλHσ, µ(G1) = −B ′ H2σ + 2zβ Hσ.

We estimate the first two inequalities which give

nD J 2
+ rµ(Fr ) < 0, nD J 2

+ µ(G1) < 0.

To evaluate these expressions it is clearly enough to pose the following conditions to the slopes of Fr and G1

λH = −1 and A = 0,

β H = −1 and B ′
= 0, resp. β H = 0 and − B ′

= −1

where we have chosen for −B ′, respectively, β H the worst case, i.e. the biggest values, which are −1. In summary,
we have to solve for z the following system (with a := αH and all intersection products taken in B)

n(x H2
+ 2za) − 2z < 0

n(x H2
+ 2za) − H2 < 0

x H2
+ 2za > 0.

We find for 0 < x < −a the condition

nx
1 − na

H2

2
< z <

−x
a

H2

2
.

If x = 0 and a > 0 we get na < 1 and z < 1
na

H2

2 ; as na ≥ n we find that in case (ii) we cannot solve the conditions
which would exclude a destabilizing subsheaf of V .

Finally, for −a < x < 0 we obtain the condition

−x
a

H2

2
< z <

nx
1 − na

H2

2
.

(iv): This case will be treated in Lemma 4.4 below. We show that potential subsheaves of V of the type V ′

0+1 with
µ(V ′

0+1) = nD J 2 > 0 do not exist. �

To treat the (0, 1) cases with µ(G1) = 0 let us first determine the general structure of G1.

Lemma 4.3. G1 has the structure G1 = OX (−D2) ⊗ IY with D2 ≥ 0 and codim Y ≥ 2.

Proof. For the convenience of the reader we recall the proof of this standard fact. In the (0, 1) case G1 ⊗OX (nD) =

V ′ ↪→ V2 and the torsion sheaf T̄ is a quotient ofO, so T̄ = OZ for a subscheme Z of X , and, considering the vertical
sequence on the right, G1 = IZ where IZ is the ideal sheaf of Z . Further D2 J 2

≥ 0 for D2 = c1(IZ ) which comprises
the codim = 1 components of Z ; so IZ = OX (−D2) ⊗ IY where Y j : Y → X is the closed immersion of the union
of all components of Z of codim ≥ 2. �

This result and the following result apply for any extension of the type

0 → Vn ⊗OX (−D) → V → OX (nD) → 0

on a general Calabi–Yau threefold X .

Lemma 4.4. V ′
= IY ⊗OX (nD) with codim Y ≥ 2 does not occur as a subsheaf of V .



2256 B. Andreas, G. Curio / Journal of Geometry and Physics 57 (2007) 2249–2262

Proof. Let V̄n = Vn ⊗OX (−D). By Lemma 2.3 we have to prove that f : Ext1(OX (nD), V̄n) → Ext1(IY (nD), V̄n)

is injective. For this consider

0 → IY (nD) → OX (nD) → OY (nD) → 0

taking Hom(·, V̄n) yields

0 → Hom(OX (nD), V̄n) → Hom(IY (nD), V̄n) → Ext1(OY (nD), V̄n) →

→ Ext1(OX (nD), V̄n)
f

→ Ext1(IY (nD), V̄n) → · · · .

We have to show that Ext1(OY (nD), V̄n) = 0. Now Serre duality gives Ext1(OY (nD), V̄n) ∼= Ext2(V̄n,OY (nD))∗

further we have

Ext2(V̄n,OY (nD))∗ = Ext2(OX , V̄ ∗
n ⊗OY (nD))∗ = H2(X, V̄ ∗

n ⊗OY (nD))∗

now as OY ≡ j∗OY we have H2(X, V̄ ∗
n ⊗ OY (nD))∗ = H2(X, j∗( j∗(V̄ ∗

n ⊗ OX (nD))))∗ = H2(Y, j∗(V̄ ∗
n ⊗

OX (nD)))∗ = 0 for codim Y ≥ 2. �

Remark 4.5. As for x = 0 we cannot assure solvability of the numerical slope conditions, one would need to give a
condition such that

0 → Fr ⊗ OX (−D) → V ′

r+1 → IY ⊗OX (nD) → 0

for 0 < r < n does not occur as potential subsheaf of V .

5. Stable extensions on CY spaces with del Pezzo surface base

In this section we will consider elliptically fibered Calabi–Yau threefolds π : X → B whose base has an ample
K −1

B . As in the previous section we consider extensions V of OX (nD) by π∗E ⊗OX (−D). We first note

Lemma 5.1. π∗E is (semi)stable on X with respect to J = zσ + π∗ H ∈ CX (i.e. H − zc1 ∈ CB , so z < h) if E is
(semi)stable on B with respect to H = hc1 and has c1(E) = 0.

Proof. Let F be a subsheaf of π∗E where we can assume that π∗E/F is torsion free [10, Lemma 4.5]; so we
have 0 → F |σ → E and c1(F |σ )H < 0 (for semistability ≤ 0). Similarly we get 0 → F |F → Or

F thus
deg(F |F ) ≤ 0 as Or

F is semistable (where r := rk E). Then for H − zc1 ∈ CB and c1(F) = −Aσ + λ with
A ≥ 0 and λH ≤ (Ac1 + λ)H < 0 (the latter and the following < are ≤ for semistability)

c1(F)J 2
= −A(H − zc1)

2σ + z(2H − zc1)λσ < 0. �

We can now proceed as in the previous section and prove the stability of the extension V .

Proposition 5.2. Let V be a rank n + 1 vector bundle on π : X → B defined by a non-split extension

0 → π∗E ⊗OX (−D) → V → OX (nD) → 0

with E a rank n bundle with c1(E) = 0, stable with respect to H = hc1, and D = xσ + π∗α. Then V is stable with
respect to J = zσ + π∗ H for 0 < |x | < |a| and for z in the following ranges (ζ := h − z)

(i) 0 < x < −a and nx
n(xc2

1−a)+1
H2 < h2

− ζ 2 < nx
n(xc2

1−a)
H2

(ii) −a < x < 0 and nx
n(xc2

1−a)
H2 < h2

− ζ 2 < nx
n(xc2

1−a)+1
H2.

Proof. The proof is completely parallel to the proof of Proposition 4.2 up to the following consideration. The slopes
of Fr , G1 and the expression for D J 2 are given by

rµ(Fr ) = −A(h − z)2c2
1σ + z(2h − z)λc1σ

µ(G1) = −B ′(h − z)2c2
1σ + z(2h − z)βc1σ

D J 2
= x(h − z)2c2

1σ + z(2h − z)αc1σ
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inserting these expressions in the estimated inequalities

nD J 2
+ rµ(Fr ) < 0, nD J 2

+ µ(G1) < 0

and imposing as in Proposition 4.2 the following conditions to the slopes of Fr and G1

λc1 = −1 and A = 0,

βc1 = −1 and B ′
= 0, resp. βc1 = 0 and − B ′

= −1

we find the following inequalities, which have to be solved for z (here and in the following all intersection products
are taken in B)

nxh2c2
1 + (na − 1 − nxc2

1)(2h − z)z < 0

(nx − 1) h2c2
1 +

(
na + c2

1 − nxc2
1

)
(2h − z) z < 0

xh2c2
1 +

(
a − xc2

1

)
(2h − z) z > 0.

Define ζ := h − z such that 0 < ζ < h. For 0 < x < −a we get

nxh2c2
1

n(xc2
1 − a) + 1

< h2
− ζ 2 <

xh2c2
1

xc2
1 − a

.

For x = 0 and a > 0 we find from the first inequality above

(na − 1)(h2
− ζ 2) < 0

but (h2
− ζ 2) > 0 and (na − 1) > 0.

Finally, for −a < x < 0 we get the condition

xh2c2
1

xc2
1 − a

< h2
− ζ 2 <

nxh2c2
1

n(xc2
1 − a) + 1

. �

6. Stable extensions of spectral cover bundles

In this section we will study non-split extensions of stable spectral cover bundles Vn on π : X → B with B either
given by a Hirzebruch surface (or blow-ups of it), a del Pezzo surface or an Enriques surface. We first recall the notion
stable spectral cover bundle.

Let X be an elliptically fibered Calabi–Yau threefold with a section σ , let C be an irreducible surface in the linear
system |nσ + η| and i : C → X the immersion of C into X and let L be a rank one sheaf on C . We say that Vn
is a spectral cover bundle of rank n if Vn = π1∗(π

∗

2 (i∗L) ⊗ P) where P is the Poincaré sheaf on the fiber product
X ×B X and π1,2 are the respective projections on the first and the second factors. Moreover, Vn is stable with respect
to J = ε J0 +π∗ H for 0 < ε < ε0 as stated in Theorem 7.1 in [2] (we will always assume that ε is sufficiently small).
Furthermore, note that various aspects of the spectral cover construction have been studied in [11–15]. In particular,
in [13] a general statement is provided (without proof) when stable extensions of spectral cover bundles exist.

Let H be an ample divisor in B, we define the minimal H -degree as follows

(ΛH)min = min{Λ · H | Λ ∈ H2(B, Z) effective, Λ · H > 0}

which will be useful for defining the minimal slope of the subsheaf G1.

Proposition 6.1. Let Vn be a stable spectral cover bundle of rank n on π : X → B and let V be defined by a non-split
extension

0 → Vn ⊗OX (−D) → V → OX (nD) → 0

with D = xσ + π∗α then V is stable with respect to J = εσ + π∗ H for x = 0 and 0 < nαH < (ΛH)min.

Proof. As in Proposition 4.2 we have to treat the cases (i)–(iv).
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(i)–(iii): By stability of Vn we have c1(Fr ) = −Aσ + π∗λ with A > 0 by Theorem 7.1 of [2] and c1(G1) = −D2
with D2 = B ′σ + π∗β̄ an effective divisor. We set −β̄ = β such that c1(G1) = −B ′σ + π∗β. The slopes of Fr and
G1 and the expression for D J 2 are given by (we define H̄ := 2H − εc1)

rµ(Fr ) = −AH2σ + ε (λ + Ac1) H̄σ

µ(G1) = −B ′ H2σ + ε (β + Bc1) H̄σ

D J 2
= x H2σ + ε (α − xc1) H̄σ.

As in Proposition 5.2 we have to consider nD J 2
+ rµ(Fr ) < 0 which becomes

(nx − A) H2σ + ε (nα + λ − (nx − A)c1) H̄σ < 0.

For nD J 2
+µ(G1) < 0 we have to consider for −B ′ and β H̄ the worst case, i.e., when |µ(G1)| is minimal. This will

be achieved for either B ′
= 0 and −β H̄ = (−β H̄)min > 0 or −B ′

= −1 and β H̄ = 0.

nx H2σ + εn (α − xc1) H̄σ − ε(−β H̄)minσ < 0

(nx − 1) H2σ + ε (nα − (nx − 1)c1) H̄σ < 0.

For x > 0 we cannot solve the first inequality as we have to assume A = 1 as the worst case. The cases with x < 0
are ruled out by the positivity condition D J 2 > 0.

If x = 0 then D J 2
= ε(α H̄) > 0 implies α H̄ > 0 and we get (intersections taken in B)

−AH2
+ ε (nα + λ + Ac1) H̄ < 0

nα H̄ − (−β H̄) < 0
−H2

+ ε(nα + c1)H̄ < 0

where the second constraint implies nα H̄ < (−β H̄)min.
Finally, the case (iv) is ruled out by Lemma 4.4. �

Let us give an example for solving 0 < nα H̄ < (−β H̄)min.

Example 6.2. Let B be the Enriques surface then H̄ = 2H ; further let H, α, β ∈ Γ 1,1. We fix a polarization
H = (v, v + 1) and set β = −β̄ = −(e, f ). We take α = (1, −1) such that αH = 1 and so we have to solve
the inequality for n. Then (−β H)min = v and we get solutions for 0 < n < v.

Finally, we state the conditions such that an extension of OX (nπ∗α) by Vn ⊗OX (−π∗α) can be chosen non-split.

Lemma 6.3. Let Vn be a stable spectral cover bundle of rank n and let α ∈ H2(B, Z) then an extension of OX (nπ∗α)

by Vn ⊗ OX (−π∗α) can be chosen non-split if χ(A, R1π∗Vn|A ⊗ OB(−mα)|A) > 0 with A := π(C ∩ σ) and
C ∈ |nσ + π∗η|.

Proof. Applying the Leray spectral sequence to π : X → B yields

0 → H1(B, π∗Vn ⊗OB(−mα)) → H1(X, Vn ⊗OX (−mπ∗α))

→ H0(B, R1π∗Vn ⊗OB(−mα)) → H2(B, π∗Vn ⊗OB(−mα)) → .

For a given spectral cover bundle Vn one has π∗Vn = 0. At a generic point b ∈ B one has the stalk (π∗Vn)b =

H0(F, Vn|F ) =
⊕n

i=1 H0(F,OF (qi − p)) where p = σ F is the zero element in the group law on the fiber F over
b ∈ B and qi are the points at which the spectral cover of Vn intersects F . Now O(qi − p) is generically a nontrivial
bundle of degree zero which over an elliptic curve admits no global sections. Thus H0(F,OF (qi − p)) = 0 for all
i and so (π∗Vn)|b = 0. However, since Vn is torsion free, π∗Vn is also torsion free. Thus (π∗Vn)|b = 0 for generic
b ∈ B gives π∗Vn = 0 everywhere. It follows that

H1(X, Vn ⊗OX (−mπ∗α)) ∼= H0(B, R1π∗Vn ⊗OB(−mα)).

The sheaf R1π∗Vn has support on A = π(C ∩ σ) of class η − nc1 in B and H0(B, R1π∗Vn ⊗ OB(−mα)) ∼=

H0(A, R1π∗Vn|A ⊗OB(−mα)|A). The Grothendieck–Riemann–Roch theorem for π : X → B gives

c1(R1π∗Vn) = η − nc1.
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The Riemann–Roch formula gives

χ(A, R1π∗Vn|A ⊗OB(−mα)|A) =
3
2
(η − nc1)

2
− mα(η − nc1)

so if 3
2 (η − nc1)

2
− mα(η − nc1) > 0 then H0(S, R1π∗Vn|A ⊗OB(−mα)|A) 6= 0 and the extension can be chosen

to be non-split. Note that irreducibility of the spectral surface (required for stability of Vn) demands η ≥ nc1. �

7. Physical solutions

A compactification of the perturbative E8 × E8 heterotic string on a Calabi–Yau threefold X requires
mathematically to construct a pair of stable holomorphic vector bundles (V1, V2) of the same slope and trivial
determinant on X . Consistency of the physical theory requires the bundles to satisfy the topological constraint

c2(T X) =

∑
i

c2(Vi ),

the necessary condition for solutions to the heterotic anomaly condition. The spectral cover construction does not
lead to vector bundles which solve this topological constraint as [W ] := c2(T X) −

∑
i c2(Vi ) is non-zero. If [W ] is

non-zero then physically one expects a five-brane to contribute a source term δ4 (a current that integrates to one in
the direction transverse to a single five-brane) to the Bianchi identity for the three-form H . To each five-brane one
associates such a four-form delta function source. The class [W ] is then the Poincaré dual of an integer sum of all
these sources and thus [W ] should be integral, representing a class in H2(X, Z). We will use the same expression [W ]

for an integral homology class in H2(X, Z), an integral cohomology class in H4(X, Z) and the de Rham cohomology
class in H4

DR(X, R) (i.e., as H p(X, Z) → H p
DR(X, R) is not injective, integral classes are identified with the images

of H p(X, Z) in H p(X, R)). [W ] can be further specified taking into account that supersymmetry requires that five-
branes are wrapped on holomorphic curves thus [W ] must correspond to the homology class of holomorphic curves.
Algebraic classes include negative classes, however, these lead to negative charges, which are unphysical, and so they
have to be excluded constraining [W ] to be an effective class. Thus for a given Calabi–Yau threefold X the effectivity
of [W ] constrains the choice of vector bundles V . Consideration of the physical background of a heterotic string
compactification [4] reveals that [W ] = 0 is the favorite case by consistency requirements.

What we will show now is that the vector bundles constructed above allow to solve the topological constraint with
[W ] = 0. To solve the anomaly constraint we set V1 = V and V2 = 0 we find

c2(X) − c2(V ) = π∗wB σ + a f [F]

where [F] denotes the class of a fiber of X . Let V be given by

0 → V̄n ⊗OX (−D) → V → OX (nD) → 0

where V̄n will be specified below as either π∗E or a spectral bundle Vn , we find (set c2(V̄n) = π∗φ σ + π∗ω with
φ ∈ H2(B, Z) and ω ∈ H4(B, Z))

wB = 12c1 − φ +
1
2

n(n + 1)x(2α − xc1)

a f = c2 +
1
2

n(n + 1)α2
− ω + 11c2

1.

7.1. The case of B the Enriques surface

Let V̄n = π∗E , if B is an Enriques surface the problem of finding solutions to [W ] = 0 simplifies as the following
result shows.

Proposition 7.1. Let π : X → B with B an Enriques surface then the physical constraint wB ≥ 0 implies x = 0.

Proof. For Enriques base we find
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wB =
1
2

n(n + 1)x(2α − xc1) ≥ 0

a f = 12 +
1
2

n(n + 1)α2
− c2(E) ≥ 0

to solve wB ≥ 0 requires xα ≥ 0 (we already argued from the non-split condition that α 6= 0, c1). So xαH ≥ 0
contradicting Lemma 3.1. �

If V2 is nontrivial the argument remains valid as wB =
∑2

i=1 ai xiαi ≥ 0 (with ai > 0, a1 =
n(n+1)

2 ) gives
wB H ≥ 0 in contradiction to Lemma 3.1.

But x = 0 is the case where the existence of stable bundles could not be assured above.

7.2. The case of B a del Pezzo surface

Let π : X → B an elliptic Calabi–Yau threefold with K −1
B ample. Let V̄n = π∗E . In contrast to the case of the

Enriques base it is now possible to satisfy wB ≥ 0 while having x 6= 0. One finds [W ] = 0 for the choices

α =

(
x2

2
−

12
n(n + 1)

)
c1

x
H⇒ wB = 0

c2(E) = c2 + 11c2
1 +

n(n + 1)

2
α2

H⇒ a f = 0.

For x > 0 the non-split condition (cf. Lemma 3.1, (i)) is satisfied if (set m = n + 1)

x2
≤

24
nm

2n +

(
(3m3

+ m2)nx2

12
+

144
mx

−
37
3

n − 20
)

c2
1 > 24.

For instance, for building an SO(10) GUT model without five-branes one can use the twist D = σ − π∗c1/2 and a
rank n = 3 bundle E on a base Fr of c2(E) = 104. For another case one may construct an E6 GUT model without
five-branes from using the twist D = 2σ and a plane bundle of c2(E) = 92.

7.3. Extensions by spectral bundles

Let π : X → B an elliptic Calabi–Yau threefold with B either given by a Hirzebruch surface (or blow-ups of it), a
del Pezzo surface or an Enriques surface. Let V̄n = Vn a spectral rank n vector bundle has second Chern class equal
to [1]

c2(Vn) = π∗η σ −
1
24

π∗c2
1(n

3
− n) +

1
2

(
λ2

−
1
4

)
nπ∗η(π∗η − nπ∗c1).

The condition c1(Vn) = 0 imposes constraints on the spectral data [1]. One finds: if n is even then λ = m +
1
2 and

m ∈ Z. If n is odd one has λ = m and η ≡ c1 (mod 2). For this set-up we get

wB = (12c1 − η)

a f = c2 + 11c2
1 +

1
2

n(n + 1)α2
+

1
24

(n3
− n)c2

1 −
1
2

(
λ2

−
1
4

)
nη(η − nc1).

Now wB = 0 is solved for η = 12c1. Then for a f = 0, we have to solve

c2 + c2
1

(
11 +

n3
− n

24
−

1
2

(
λ2

−
1
4

)
(12 − n)n

)
+

1
2

n(n + 1)α2
= 0.

To give an example let us assume that B = F0. We get for instance a f = 0 for n = 2 and m = 1 and α = (1, −11).
The bundle is stable for H = (3, 34) so αH = 1 and 0 < nαH < (−β H)min becomes 0 < 2 < 3, is satisfied. The
non-split condition 3

2 (η − nc1)
2
− mα(η − nc1) > 0 is satisfied.
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Appendix

Let π : X → B be an elliptically fibered Calabi–Yau threefold with a section σ and base B given by an Enriques
surface, i.e., h1,0(B) = 0 and K 2

B = OB . We first recall some basic properties of these spaces. B has nontrivial Hodge
numbers h1,1(B) = 10, h0,0(B) = h2,2(B) = 1, so c2

1 = 0 and c2 = 12. Further φc1 = 0 for all φ ∈ H2(B, Z) and
the intersection form is even [7]. A smooth curve C has e(C) = −C2, and a generic (‘unnodal’) B has no smooth
rational curves. One gets for the middle cohomology H2(B, Z) = Z10

⊕ Z2 with intersection lattice

Γ 1,1
⊕ E (−)

8 =

(
0 1
1 0

)
⊕ E (−)

8

(orthogonal decompositions). B is always elliptically fibered over b = P1. However, two of the fibers, f1 and f2, are
double fibers: f = 2 fi , which prevents B from having a section and c1 = f1 − f2 is not effective.

Let us consider the effective cone. On an unnodal B all irreducible curves C have C2
≥ 0. The integral classes

in one of the two components of the cone in H2(B, R) defined by C2
≥ 0 constitute the effective cone (potentially

adding the torsion class c1 does not matter for this if C 6= 0; we will not always mention explicitly this exceptional
case). For C nef (i.e. DC ≥ 0 for all curves C on B) |C | is base-point-free, and C is ample if also C2

≥ 6 [7]. A
C = xa + y f := (x, y) ∈ Γ 1,1 is nef precisely if it is effective in the F0-sense, i.e., for x, y ≥ 0.

Furthermore, we note that B can be represented as the quotient of a K 3 surface by a free involution. The K 3 can be
represented as a double cover w2

= f4,4(z1, z2) of P1
z1

×P1
z2

, branched along a curve of bi-degree (4, 4), so elliptically
fibered pi : K 3 → P1

zi
. The involution is (z1, z2; w) → (−z1, −z2; −w). This shows also two elliptic fibrations of B

with the double fibers over 0 and ∞

K 3 −→ B

pK 3 ↓ ↓ p

P1
z1

(·)2

−→ P1
z1

Note also that in an orbifold limit T 4/Z2 of K 3 the involution is (−1, 1) on the complex coordinates (t1, t2) of T 4,
combined with a shift by a half lattice vector in both directions.

The corresponding π1(B) = Z2 is inherited by the elliptic Calabi–Yau space X which itself is a quotient by a free
involution on K 3 × T 2 (it acts as described on K 3 and as z → −z on the T 2). The holomorphic two-form Ω2 of K 3
being odd, the holomorphic three-form Ω2 ∧ dz is preserved, the quotient X being a Calabi–Yau space of vanishing
Euler number. Finally, the second Chern class of X can be obtained by a standard computation (cf. [1]) and is given
in general by (with ci := ci (B))

c2(X) = π∗c2 + 11π∗c2
1 + 12σπ∗c1.
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